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ABSTRACT: We have used design of experiments (DOE) and
systematic variance to efficiently explore glutathione transferase
substrate specificities caused by amino acid substitutions. Amino
acid substitutions selected using phylogenetic analysis were
synthetically combined using a DOE design to create an
information-rich set of gene variants, termed infologs. We used
machine learning to identify and quantify protein sequence−
function relationships against 14 different substrates. The resulting
models were quantitative and predictive, serving as a guide for
engineering of glutathione transferase activity toward a diverse set of
herbicides. Predictive quantitative models like those presented here
have broad applicability for bioengineering.

KEYWORDS: synthetic biology, machine learning, design of experiment, enzymes, sequence space, optimization, bioengineering,
herbicide resistance

Glutathione transferase (GST, EC 2.5.1.18) catalyzes the
conjugation of glutathione (GSH) to the electrophilic

center of a variety of endogenous and xenobiotic substrates for
the purpose of subsequent detoxification. Mammals and plants
have numerous diverse GSTs allowing for the conjugation of a
broad range of diverse substrates. Members of the GST
superfamily are broadly distributed in amino acid sequence
homology, and the preferred substrate(s) for a large fraction of
the GST sequences deposited in public databases are
unknown.1 The GST enzymes are often expressed at high
concentrations, constituting up to 10% cytosolic protein in
mammalian liver2 and up to 2% of total foliage protein in cereal
crops.3 In plants, the family of soluble GSTs comprises at least
six classes of proteins based on phylogenetic relationships:
theta, zeta, phi and tau, lambda, and dehydroascorbate
reductase,4 of which the phi and tau classes, unique to plants,
are the most numerous. Previous plant genomics approaches
and laboratory derived directed evolution experiments have
identified and characterized a number of native and syntheti-
cally evolved GST proteins displaying widely varying expression
profiles and substrate specificities.5,6 Detoxification of several
herbicides, including dimethenamid,7 fenoxaprop-ethyl,8 and
flupyrsulfuronmethyl,9 has been shown to be catalyzed by
native wheat GSTs.
Potential non-GMO transgenic trait engineering relies on

altering few nucleotides in the genome without the aid of

markers or nonendogenous genetic sequences.10 Building a
sequence−function map of natural wheat GST will allow for the
identification of the minimal number of GST substitutions that
result in the most change of the trait to be affected. Such maps
could be useful for many different herbicide resistance traits.
In this paper, we have mapped the relationship between GST

sequence and substrate specificity to illustrate this approach as a
general model for navigating sequence−function space. Protein
engineering is a search for variables (typically amino acid
substitutions) and their preferred combinations that produce
desired functional properties. For most enzyme engineering
applications, these properties can be orthogonal or correlated.
For example, one may wish to improve catalytic activity, while
maintaining high stability and substrate specificity, and
minimizing any deleterious interactions with the production
host or application system. Structure−function space thus has a
high dimensionality in both the dependent and independent
variables. Efficient navigation of this space requires optimized
search methodologies.
With the 20 naturally occurring amino acids as possibilities

for each residue in a protein, sequence space is hyper-
dimensional and vast (20N where N is the number of residues in
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the protein). Previous work has shown that the majority of this
protein sequence space is nonfunctional for any given property,
in most cases failing even to fold into a defined structure.11

Naturally occurring proteins with fitness for one or more
functional properties occupy extremely small regions of this
space, much like very rare islands within the total available
sequence space. For desirable activities, functional islands are
far too rare to be found by a random search. Despite recent
advances current rational understanding of protein folding and
structure−function relationship is inadequate to permit reliable
de novo design of catalytic function in proteins.12 In contrast,
directed evolution methods starting from existing natural
protein islands in sequence space have been proven reasonably
successful.13 Even the best directed evolution methods have
significant room for improvement: random sampling of very
large functionally sparse sequence space necessitates high-
throughput functional screening, which in turn limits the types
of activity measurements that can be made.14 Furthermore,
directed evolution methods generally keep only the sequence
information in the handful of “best” clones that appear in the
course of the selection process, discarding the information from
the majority of the variants tested.
A few protein sequence−function mapping studies have

attempted to thoroughly explore a narrowly defined region of
total sequence space. Noel and co-workers analyzed the impacts
of all 9 amino acid substitutions separating two sesquiterpene
synthases in the catalytic landscape. They created a library of 29

(= 512) gene variants where >80% of all possible combinations
were tested for product formation, and the relative contribution
of each substitution and combination of substitutions were
quantified resulting in a measure of the mutational accessibility
between two terpene synthases.15 Similarly, Keasling and co-
workers performed site saturation mutagenesis at 19 residues
close to the active site of a sesquiterpene synthase and
combined the preferred amino acid substitutions allowing for
only 2500 gene variants to be screened and identifying 7 novel
substrate specificities.16 The amino acid substitution inter-
dependence can be captured as linearly additive as in the above
examples or by using Bayesian statistics as was used for
modeling chimeric cytochrome P450s.17

We have broadened this approach by using design of
experiments (DOE) strategies to minimize the number of
individual sequences that must be tested to map a sequence−
function landscape. Briefly, we used phylogenetic, structural
and experimental information to computationally identify

amino acid substitutions likely to affect GST-mediated
herbicide resistance. The top scoring 59 amino acid
substitutions were systematically introduced into the natural
wheat GST protein encoding gene to generate a small set of
systematically varied gene variant “infologs”, so that covariation
between amino acid substitutions of the encoded proteins was
minimized and each dimension was sampled uniformly.
Infologs were tested for their activity on 14 different substrates,
and machine learning was used to estimate the relative weights
of the independent and combinatorial functional contributions
of the amino acid substitutions.
We have previously argued that the scheme of natural

evolution is based on a molecular quasi-species consisting of an
ensemble of functionally related variants from which enhanced
functions can emerge by stochastic mutagenesis.18,19 The
design strategy based on infologs described here is a rational
primary-structure guided approach by which a corresponding
ensemble of mutants is specifically synthesized for optimal and
quantitative information content and directed evolution.
We show that a set of 95 GST infologs is sufficient for the

identification of amino acid substitutions that increase
enzymatic activity against 6 herbicides. We also find activities
against 8 herbicides toward which the natural wheat GST has
no detectable activity. This information set allowed us to
construct a crude map of the GST sequence−function space in
14 functional dimensions. We also show that the weights of the
amino acid substitutions from sequence−activity models are
predictive, enabling navigation of enzyme specificity through
megadimensional herbicide activity space.
As a model GST protein for this study, the tau-class GST

enzyme TaGSTU4−4 from wheat (Triticum aestivum L.) was
chosen. The sequence of wheat TaGSTU4−4 is presented in
Figure 1. TaGSTU4−4 is a homodimer present in wheat that
catalyzes the conjugation of reduced GSH to several different
substrates in vitro.7,20,21 The TaGSTU4−4 protein has
previously been purified from etiolated shoots of diploid
wheat, showing that the native protein can detoxify
dimethenamid, a common herbicide, and CDNB (1-chloro-
2,4-dininitrobenzene), the standard chromogenic GST sub-
strate.7 The corresponding TaGSTU4−4 gene has been cloned
and the recombinant protein crystallized at 2.2 Å resolution in
complex with S-hexylglutathione, a substrate analogue inhib-
itor.20 The recombinant TaGSTU4−4 protein and engineered
versions thereof was shown to catalyze the glutathionylation of
eight related compounds.

Figure 1. TaGSTU4−4 sequence. The protein sequence of TaGSTU4−4 (wtGST) depicted above. The amino acid substitutions explored within
the infolog set are shown above the corresponding wild type amino acid.
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We added an N-terminal His-tag to the amino acid sequence
of TaGSTU4−4, and the resulting protein sequence was
converted to a nucleotide sequence using the GeneGPS
technology22 designed to recode genes to express high level
of soluble protein in Escherichia coli. The synthetic construct
was denoted wtGST, synthesized and cloned in expression
vector pJ401 (DNA2.0) under the control of a modified T5
promoter. The wtGST was expressed in E. coli strain BL21,
purified by Ni-NTA chromatography, and shown to gluta-
thionylate CDNB with specific activity of ∼600 nkat mg−1

protein, very similar to that previously reported,20 illustrating
that the recoding and addition of N-terminal His-tag did not
significantly alter the functional properties of the protein.
Variations among homologues of extant proteins have arisen

by natural evolution from neutral or adaptive changes within
functional islands of the sequence space. Unlike random
mutations, naturally existing amino acid variations generally
retain the overall protein fold while allowing for the exploration
of improved functionality.23 Individual amino acid variations
observed in nature are a preferred source of amino acid
substitutions as they are less likely than random amino acid
substitutions to introduce detrimental changes in the protein.
In addition, due to the nature of molecular evolution, there is a
low likelihood for simultaneous mutations to be fixed in the
population. The effects of natural amino acid substitutions are
also predominantly independent,24 making naturally existing
amino acid substitutions better suited to statistical modeling of
sequence−function than substitutions generated by random or
saturation mutagenesis, rational design using structure
information, or by any other random means.

We accordingly used amino acid substitutions present in
existing GST homologues to explore the sequence−function
correlation of GST substrate specificity. The wtGST protein
sequence was used as a BLAST query25 against Genbank
release 174 to extract 180 homologue sequences with >40%
identity to wtGST. The 180 sequences were aligned using
ClustalW26 and all amino acid diversity present at every
position in the GST protein alignment was captured. A total of
∼1700 amino acid substitutions were identified and rank
ordered using automated variable selection and characterization
tools as described previously.27,28 In short, the ∼1700
substitutions distributed across the length of the gene were
quantified for 10 properties such as scoring in a global Dayhoff
PAM matrix as well as a Dayhoff PAM matrix built for this
family of proteins, sequence conservation, convergent evolution
rate, rate of synonymous codon mutations, surface versus core
location in protein structure, proximity to active site and
information content. Each of the ∼1700 substitutions was
evaluated for each property with scoring ranging from 0 (e.g.,
most distant from active site) to 1 (closest to active site). The
scores were mean centered and normalized for each property.
The corresponding value was averaged across all properties for
each substitution and used to rank-order the substitutions. The
59 highest ranked substitutions are mapped on the wtGST gene
sequence in Figure 1 and listed in Table S1 (Supporting
Information). We predominantly identify amino acid sub-
stitutions that are similar (L to I/V, and K to R, etc.) suggesting
minor perturbation of the enzyme instead of drastic alterations.
These 59 amino acid substitutions define a 59-dimensional
qualitative sequence space centered on the wtGST sequence,

Figure 2. Global sequence distribution of GST infologs. Unrooted tree generated by neighbor-joining method, based on the pairwise Hamming
distance (number of nucleotide difference) between each infolog. The tree encodes 95 GST infologs surrounding the wtGST center point. Each
infolog is equidistant from every other infolog having the same number substitutions.
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where each varying position is a variable with a value of 0
(native residue) or 1 (substitution).
Following the identification of 59 amino acid substitutions,

we designed synthetic GST sequences using DOE methods29 to
systematically sample the 59 amino acid substitutions within
the backbone of the functional parent enzyme and assess their
contribution to GST substrate specificity. These synthetic gene
variants are referred to as infologs and defined as genes and/or
proteins related by synthetic ancestry designed to approach
perfect diversity distribution. This type of unbiased systematic
sampling allows for maximal exploration of sequence space with
a minimal number of test samples.
A total of 95 infologs were designed to systematically

incorporate 3 (48 infologs), 4 (24 infologs), or 5 (23 infologs)
identified substitutions from Table S1 (Supporting Informa-
tion), with each substitution represented in 6 of the 95 infologs.
Each amino acid substitution was encoded by a codon
identified by the GeneGPS algorithm to ensure that consistent
and high heterologous protein expression level was retained.
Each infolog was designed to be as distant and as uncorrelated
as possible from all other infologs in the 59-dimensional amino
acid substitution space. This design provides an unbiased and
uniform distribution of the sampled substitutions as seen in

Figure 2. By measuring the functional effect of each substitution
6 times in 6 different contexts, the contributions from
individual substitutions can be assessed, along with their
dependency on the context, without a significant increase in the
total number of test samples required.
Chemical gene synthesis enabled quick and efficient synthesis

of the full infolog set. Proteins were expressed and purified in
parallel, and GST activity assays were adapted for 96-well
plates. Most GST infologs expressed >50 μg of protein per mL
as quantified by PAGE. The 95 purified infologs and the
positive control wtGST were diluted to 25 μg/mL and
dispensed in 96-well plates.
Fourteen xenobiotic compounds were selected based on

commercial relevance and the presence of an electrophilic
center reasonably likely to be amenable to GST-mediated
detoxification (Figure S1, Supporting Information). Commonly
used herbicides S-metholachlor, alachlor, fenoxaprop and
flufenacet all target fatty acid biosynthesis in grass. Herbicides
fomesafen, acifluorfen and fluorodifen are inhibitors of the
chlorophyll precursor synthase protoporphyrinogen oxidase.
Atrazine and terbuthylazine are herbicides inhibiting photo-
system II and mesotrione inhibits pigment formation.
Dichlorvos is an insecticide inhibiting acetylcholinesterase and

Figure 3. Predictive models for substrates S-metolachlor and alachlor. The measured activity of each infolog is used to generate a model (A1, B1)
assigning a weight (A2, B2) to each individual variable (substitution) describing its effect on activity. A1 and A2 is the model and weight assignment
respectively for S-metolachlor. B1 and B2 is the model and weight assignment respectively for alachlor. The distribution bar for each variable
indicates the Gaussian distribution of the calculated weight within the 1000 bootstraps of subsampling as described in the text. Instick graph in A1
and B1 shows model if sample order is randomized (cross validation of 0.04 and 0.17 respectively).
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the active ingredients triclosan and triclocarban are commonly
used antibacterial/antifungal compounds used in soap and
other consumer products. The final xenobiotic molecule in the
set is dinitrotoluene, primarily known as a precursor to the
explosive material trinitrotoluene (TNT), but mainly produced
as a precursor to commodity chemical toluene diisocyanate. All
of the listed xenobiotic compounds are toxic and environmental
hazards to various degrees.
The catalytic activity of each infolog against every substrate

was quantified using a standard GST assay measuring the
consumption of GSH (thiol donor) in the sample relative to a
negative control.30 The canonical GST substrate CDNB was
used as positive control for GST activity.
The starting point wtGST had detectable activity against 6 of

the 14 xenobiotics, with catalytic activities ranging from level of
detection (5 mmol product/mol enzyme min−1) to 150 mmol
product/mol enzyme min−1 measured against preferred
substrate S-metolachlor as detailed in Table S2 (Supporting
Information). Assessment of protein-dependent GSH con-
jugation from the full infolog set against S-metolachlor
identified 4 out of 95 infologs with improved activity relative
to wtGST. Further, infologs with measurable catalytic GSH
conjugation activity were identified for all 15 tested substrates
(including against the eight substrates where wtGST showed no
detectable activity). Improvement of catalytic activity over the
starting point wtGST was identified for all 15 substrates tested.
The success rate among the 95 infologs is striking. Wide
functional diversity was also observed in specific activity and
substrate specificity across the set as can be seen in the
sequence function heat map in Figure S2 (Supporting
Information). In addition, every one of the 95 infologs sampled
had functional activity in at least one substrate dimension.
Thus, within the small and defined sequence space of wtGST
and its 95 infologs representing 59 systematically varied amino
acid substitutions, a vast functional space could be accessed.
Sequence−function correlation models were built essentially

as described.27 Briefly, machine learning algorithms were used
to build linear models of the data set by calculating a 59-
dimensional weight vector w (one dimension per variable),
where the activity Yj of a variant Xj is estimated as Yj =
(∑j=1..59wjxi,j). The weight wj is associated with the j-th
substitution, providing a quantitative estimate of the relative
effect of the j-th substitution on GST activity. xi,j represents the
presence or absence of substitution j in variant i (takes a value
from (0,1)). Bootstrapping techniques were used to create
1000 data sets containing a training subset (the set of all x,y
pairs used for a cycle of machine learning) and test subsets by
randomly splitting 20% of infolog sequences (xi) into the test
set and the rest into the training set. We interpret the weight
distribution as an indirect measure of variable epistasis.
Machine learning algorithms were used to select values for wj
that resulted in the highest correlation between measured and
predicted activities for test subsets.
Predictive models could be built for 10 of the 15 substrates.

For the remaining five substrates for which we identified novel
activity, the number of infologs with detectable activity was too
low and the sampling too sparse to allow for statistically
significant models to be built. The data and the models were
validated in silico by data permutation testing where Yi data
were randomized relative to Xi and models were constructed for
the permuted data. Several randomizations were performed and
the Wilcoxon signed rank test was used to assess the
significance of the nonpermuted model.29 Cross validation

will only quantify the accuracy of the model within the range of
training set (i.e., predict activity from gene variants performing
better than the worst gene in the training set and worse than
the best gene in the training set). Accuracy of the model
predictions may not necessarily extend to the tangent of the
function, and the accuracy of the model will with certainty
degrade with increasing distance from the training set.
Models for substrates alachlor (R2 cross validation of 0.38)

and S-metolachlor (R2 cross validation of 0.52) with high
activities and models with robust statistical significance are
presented in Figure 3. The amino acid substitution weights
denoted in the right panel of Figure 3 illustrate well the
functional distribution of the substitutions for two relatively
similar compounds. The substitution weights were subse-
quently used to calculate the predicted activity of each infolog
against each substrate. Comparing each amino acid substitution
weight for the two related substrates alachlor and S-metolachlor
as is done in Figure S3 (Supporting Information) revealed
substitutions with minimal effect in either functional direction
(e.g., Y40F), substitutions that improve both activities (e.g., I56
V), substitutions that decrease both activities (e.g., F17L) and
substitutions that are positive in one functional dimension and
negative in the other (e.g., P16A). Mapping of the identified
substitutions on the TaGSTU4−4 structure does not suggest
any obvious rationale for choice of amino acid or location
(Figure S5, Supporting Information)
The GST enzyme family is abundant and within it are a

broad range of substrate specificities.5,31 We have used amino
acid substitutions found within the GST family to design GST
infologs to systematically explore determinants of sequence−
function correlation in a GST sequence. The 95 infologs were
designed to capture and quantify the relative functional
contribution of 59 amino acid substitutions. The number of
substitutions per infolog was controlled to maximize the
sampling of single substitutions and combinations while
limiting the number of variants with unmeasurable activity
resulting from deleterious substitutions and combinations.
Similarly, choosing phylogenetically validated amino acid
substitutions also biased the infolog set for functionality. The
infolog design enabled a search space of 2.2 × 1016 proteins (38
positions that are available in 2 alternate amino acids, 9
positions available in 3 alternate amino acids and one position
that is available in 4 alternate amino acids = 238 × 39 × 41). The
search space size is still very small compared to the total
available TaGSTU4−4 space, although we believe it provides us
access to the part of the GST space that is robust, relatively
additive, and can be measured with low throughput high quality
assay technology.
Figure 3 illustrates the ability of machine learning models to

predict the relationship of protein sequence to activity toward
substrates S-metolachlor and alachlor. Activity for both
substrates is well predicted. Similar models can be built for
10 of the 14 substrates. The relative variable weight
contribution (Figure 3, right panels) identifies the variables
that contribute to either S-metolachlor activity and/or alachlor
activity. The relative weights for all 59 amino acid substitutions
against S-metolachlor and alachlor substrates can be displayed
as a biplot using principal component analysis (Figure S4,
Supporting Information) where the relative weight of each
substitution is denoted for two of the 10 functional dimensions
for which statistically relevant models could be built. Thus, the
infolog analysis provides a direct tool for simultaneous
navigation in the different sequence−function dimensions of
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GST. The process can be iterated for further improvement in
one or many functional dimensions with increasing reso-
lution.32,33

The results demonstrate that sequence space, if searched
using conservative amino acid substitution selection and
explored systematically, is locally rich in function and functional
diversity. The infolog approach here using only 95 sequences
centered on starting point wtGST provides functional
correlation weights for each of the 59 amino acid substitutions
tested in 15 dimensions of relevant functional space. Thus, a
infolog library affords tractable information, which is more
conducive to rational directed evolution than a stochastically
derived quasispecies.6 The technology can be iterated for
protein engineering27,32,33 in accordance with the current shift
toward small, functionally rich libraries.13 The infolog approach
is also well suited to a variety of protein engineering
applications, including using protein domains as variables,34,35

protein expression optimization22,36 and structure−function
analysis.37

■ METHODS
Molecular Biology. The GST infologs with an N-terminal

hexaHis tag were synthesized by DNA2.0 and incorporated into
vector pJ401 using Electra cloning.38 Vector pJ401 (DNA2.0) is
a high copy vector (pUC origin of replication) characterized by
kanamycin resistance and an IPTG inducible T5 promoter. The
GST infologs were transformed into E. coli strain BL21. Single
cell colonies were subsequently grown overnight in LB and
antibiotic. An aliquot of the culture was induced by adding 1
mM IPTG and grown for a further 4 h before harvesting cells,
lysis and isolation of His-tagged proteins using standard Ni-
NTA chromatography. With the exception of GST infologs
encoding the K8R substitution, all infologs expressed at similar
levels and all were soluble.
Biochemistry. All xenobiotic compounds were purchased

from Riedel-de Haen or Fluka. Positive control substrate
CDNB was purchased from Sigma-Aldrich. The substrates were
dissolved in H2O or DMSO. The enzymes were dialyzed
overnight with 20 mM sodium phosphate, 1 mM EDTA, and
0.2 mM DTT, pH 7. The enzymes were mixed with 2 mM
glutathione and herbicide in 0.1 M sodium phosphate and 1
mM EDTA, pH 7.5 at 24 °C for suitable time period, 10 μL of
this mixture was mixed with 240 μL of 0.1 M sodium
phosphate, 1 mM EDTA and 0.2 mM DTNB (5,5′-dithiobis(2-
nitrobenzoic acid), Ellman’s reagent), pH 7.5 and absorbance at
wavelength 412 nm was measured.30

Computational Modeling. Computational modeling was
performed using PLS Toolbox (eigenvector Research Inc.,
Wenatchee, WA) implemented in a MATLAB environment
(The MathWorks Inc., Natick, MA),
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